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1 Photovoltaic devices
* Working mechanisms
* Figures of Merit
* Considerations on the PV materials
* Device generations

O Light Emitting Diodes (LEDs)
*  Working mechanism
* Figures of Merit
* Challenges
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(Inorganic) Solar Cells: Working Principle
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A solar cell (or photovoltaic cell) is a
device which converts the light emitted
by the Sun into electric power.

Cark

—

U

lluminated




Photon absorption and optical losses

Thermalization
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Absorption occurs if E, > E,

Irradiance (W m?eV")

* Thermalization of carriers (reaching the band min/max)

* Non-radiative recombination (ex. trap-assisted mech.)

* Radiative recombination (photon emission with E,, = E.)

Transmission occurs if E, < E (energy loss)
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The balance of these mechanisms strongly depends
on the band gap energy, which in turn determines
the portion of solar spectrum that can be
converted.

For this reason the maximum theoretical efficiency
of a solar cell (thermodynamic limit known
detailed balance limit) depends only on E,.

The detailed balance limit set the maximum
theoretical efficiency of a single junction solar cell
to 33%.



Charge transport in solar cell

a) Equilibrium in dark

b) Short-circuit under light

c) Open Circuit under light
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Figures of Merit
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Figures of Merit
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Figures of Merit
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Figures of Merit
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Power Diensity (W /em®)

External Quantum Efficiency (EQE)
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Questions:

Can you guess which semiconductor can have
such an EQE?



Exercise

How the EQE curves vary with the thickness?

Why?
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Consider a solar cell containing a pn homojunction.

[s the space charge region extension affecting the
performance of the PV device? If so, how?

Which material parameters are relevant to maximize
the efficiency?
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Exercise

How the EQE curves vary with the thickness?
Why?
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Consider a solar cell containing a pn homojunction.

Exercise

[s the space charge region extension affecting the
performance of the PV device? If so, how?

To be solved in Class




Consider a solar cell containing a pn homojunction.

Exercise

Which material parameters are relevant to maximize
the efficiency?
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To be solved in Class




Which one is the best photovoltaic material?

Why?




Material comparison: Silicon

Silicon
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Material comparison: GaAs

GaAs |
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Lis 100 times
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Material comparison: Silicon vs GaAs

Band Structure

Silicon

GaAs
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1° and 2° generation solar cells

1° generation solar cells

m Si mono-crystalline cell (79 cm?)

m Si mono-crystalline module (13177 cm?)

m Si multi-crystalline cell (4 cm?)

Si multi-crystalline module (15143 cm?)

26.7

Crystalline Silicon

Monocrystalline polycrystalline Si
Large thickness (200-300 pm)

Non-toxic, cheap* active material

*Siis an earth-abundant material but it must undergo to
several manufacturing process to make it suitable for
high-efficiency PV application (solar-grade silicon)

2° generation solar cells

= CIGS cell (1 am?) 234

m CIGS module (841 cm?)

Thin film

mCdTe cell (1 cm?)

m CdTe module (7039 cm?)

GaAs cell

29.1%
Direct band gap semiconductor

Thin films (usually below 5 pm)

Typical semiconductors for II generation solar
cells are:

e [II-V (GaAs, InP, ternary alloys),

* CIGS, CIS

« CdTe

« CdS



Intrinsic and extrinsic losses

Losses in a solar cell
Detailed Balance Limit

= thermodynamic limit
Energy @ Thermalization losses (b) 35 ( y )
; : B —_—  AM1.5G
\% Junction Iosn@ - 30 Mono-Si thin film GaAs
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Organic

Pagliaro et al, Flexible solar cells, John Wiley, NY 2008
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Extrinsic Losses: Eg [eV]

e (Contact Losses
* Non-radiative recombination

Intrinsic Losses:
 Transmission
 Thermalization

« Radiative recombination

How to overcome this themodynamic limit?



3° generation solar cells — case study: multijunction solar cells

3° generation Solar Cells: all the technologies who aim
at overcoming the thermodynamic limit such as hot
carrier extraction solar cells and multijunction solar cells.

Multijunction solar cells
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gap the transmission losses are reduced.

Spectral Irradiance (W/m?2 pm)

Single junction solar cell
800 +

‘; Power spectrum from

ry black body sun at 5760K
~ 6001

= Lost by

E a00 4+ Lost by thermalisation

)

Q

=

= 200 T e i /i
'8 Optimum cell

_._': converts 31% of power

0 ; t : + b : t 1
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Photon Energy (eV)
Multi junction solar cell
1600 - [ AM1.5 spectrum
B GainP (1.70 V)
1400 -
B Gainas (1.18 eV)

1200 + B Ge (067 ev)

1000 A

800

600 4

400 -

200 -

M
0

500 1000 1500 2000 2500
Wavelength (nm)



3° generation solar cells — case study: multijunction solar cells

Solar Cell Efficiency [%]
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Efficiency of Multijunction (Tandem) Solar Cells

© Fraunhofer ISE
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Exercise
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This plot shows the characteristics of the single subcells
(GaAs NWs, Si) and the overall combination achieved by
the tandem device.

Why is the V,__ from the tandem much higher than the
ones of single subcells?

Why is the J  the same for the GaAs subcell and for
the tandem?

Estimate the FF for the three curves using the
parameters in the plot and here below. Comment on
the results.

Jop=23.88 mA/cm? ) =17.50 mA/cm? J =147 mA/cm?
V= 0.378 V Vo = 0375 V Vo = 0.738 V

5 minutes



Exercise
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Light Emitting Diodes (LEDs)

j 5, Light emitting diodes are solid-state devices
= UNTINN that efficiently convert electric power into light.
¥ ‘L | \ .
g ' ¥ LEDs contribute to the sustainable transition of
Tungsten _Halogen _CFL LED the energetic system.
Lifetime (hrs) 800 5000 5000 50000

Efficiency (Im/W)  8-10 20-30 50-60 60-80

> First LED

(red) by

Holonyak
(1962)

Awarded jointly to Isamu Akasaki, Hiroshi
Amano and Shuji Nakamura

"for the invention of efficient blue light-
emitting diodes which has enabled bright
and energy-saving white light sources”.

© Nobel Media AB. Photo: A. © Nobel Media AB. Photo: A.

Media AB. Photo: A.

© Nobel
Mahmot

Blue GaN/InGaN LED I.555Q4Akasaki ‘I‘-i'irldsin‘iAmano ShU|I Klakamura
First demonstrated in 1993 Prize share: 1/3 Prize share: 1/3 Prize share: 1/3



Phosphor downconversion

Light Orange Yellow

Down converting phosphors are materials able to absorb high
energy photons and convert them efficiently in low energy photons

Turquoise Green Turquoise

Metal oxide compounds often containing Y, Ce, Eu " ﬁ
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Working principle
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Working principle

p-n junction band
p-type semiconductor
semiconductor

hole/electron

n-type recombination

semiconductor
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VOLTAGE

Charge Charge
injecton Injecton
p-electrode ..
. _ Radiative
Al Ga, N p-Ga Si0, passivation . .
P~o.0s A \ Recombination =
p-Alu_zGau_sN\" Light emission
InGaN InGaN MQW;:E
n-GaN-" || n-electrode . . .
E, can be tuned n-Alu,.,sGao,gij pn junction in GaN ensures the control over
with the n-In, o,Ga, 3N = n-GaN i ' the charge injection
Composition GaN buffer layer
C-face sapphire substrate The InGaN (M)QW region ensures control over
the radiative recombination region




Figures of Merit
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Open Challenges

Defect density with increasing In% Green gap
Green InGaN LED
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Quantum Confined Stark Effect

m-plane (1700) ¢ plane (0001)

non-polar polar
€ < GaN

InGaN GaN GaN InGaN
GaN
Ec
Electrical field =0 Hole Electrical field >0
wave function

Figure 3.7: Quantum confined Stark effect: electron and hole wavefunctions without

(left) and with electric field (right) within the QW [22].



Effect of QCSE: band structure and EQE
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